Chromosome behavior after laser microirradiation of a single kinetochore in mitotic PtK2 cells

نویسندگان

  • P A McNeill
  • M W Berns
چکیده

The role of the kinetochore in chromosome movement was studied by 532-nm wavelength laser microirradiation of mitotic PtK2 cells. When the kinetochore of a single chromatid is irradiated at mitotic prometaphase or metaphase, the whole chromosome moves towards the pole to which the unirradiated kinetochore is oriented, while the remaining chromosomes congregate on the metaphase plate. The chromatids of the irradiated chromosome remain attached to one another until anaphase, at which time they separate by a distance of 1 or 2 micrometers and remain parallel to each other, not undergoing any poleward separation. Electron microscopy shows that irradiated chromatids exhibit either no recognizable kinetochore structure or a typical inactive kinetochore in which the tri-layer structure is present but has no microtubules associated with it. Graphical analysis of the movement of the irradiated chromosome shows that the chromosome moves to the pole rapidly with a velocity of approximately 3 micrometers/min. If the chromosome is close to one pole at irradiation, and the kinetochore oriented towards that pole is irradiated, the chromosome moves across the spindle to the opposite pole. The chromosome is slowed down as it traverses the equatorial region, but the velocity in both half-spindles is approximately the same as the anaphase velocity of a single chromatid. Thus a single kinetochore moves twice the normal mass of chromatin (two chromatids) at the same velocity with which it moves a single chromatid, showing that the velocity with which a kinetochore moves is independent, within limits, of the mass associated with it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting telomere-containing chromosome ends with a near-infrared femtosecond laser to study the activation of the DNA damage response and DNA damage repair pathways.

Telomeres are at the ends of chromosomes. Previous evidence suggests that laser-induced deoxyribose nucleic acid (DNA) breaks at chromosome ends during anaphase results in delayed cytokinesis. A possible explanation for this delay is that the DNA damage response (DDR) mechanism has been activated. We describe a live imaging method to study the effects of DDR activation following focal point nea...

متن کامل

Measurements of forces produced by the mitotic spindle using optical tweezers

We used a trapping laser to stop chromosome movements in Mesostoma and crane-fly spermatocytes and inward movements of spindle poles after laser cuts across Potorous tridactylus (rat kangaroo) kidney (PtK2) cell half-spindles. Mesostoma spermatocyte kinetochores execute oscillatory movements to and away from the spindle pole for 1-2 h, so we could trap kinetochores multiple times in the same sp...

متن کامل

The role of the centriolar region in animal cell mitosis. A laser microbeam study

An argon ion laser microbeam (488 and 514 nm) was used to selectively irradiate one of the two centriolar regions of rat kangaroo Potorous tridactylis (PtK2) prophase cells in vitro. The cells were sensitized to the laser radiation by treatment with acridine orange (0.1-0.2 mug/ml). Ultrastructural examination of the irradiated centriolar regions demonstrated that the primary site of damage was...

متن کامل

Experimental Cell Research 7.5 (1972) 424-432 LASER MICROIRRADIATION OF THE NUCLEOLAR ORGANIZER IN CELLS OF THE RAT KANGAROO (POTOROUS TRIDACTYLIS) Reduction of Nucleolar Number and Production of Micronucleoli

Cells of the established cell lines of the rat kangaroo (Puotorous tridactylis), were laser microirradiated in order to study their nucleolar organizers. Microbeam irradiation of prophase and metaphase nucleolar organizer sites in both male (PTK 1) and female (PTK2) cells resulted in a reduction in the number of normal nucleoli formed following mitosis. Irradiation of the one nucleolar organize...

متن کامل

Merotelic Kinetochore Orientation Is a Major Mechanism of Aneuploidy in Mitotic Mammalian Tissue Cells

In mitotic cells, an error in chromosome segregation occurs when a chromosome is left near the spindle equator after anaphase onset (lagging chromosome). In PtK1 cells, we found 1.16% of untreated anaphase cells exhibiting lagging chromosomes at the spindle equator, and this percentage was enhanced to 17.55% after a mitotic block with 2 microM nocodazole. A lagging chromosome seen during anapha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 88  شماره 

صفحات  -

تاریخ انتشار 1981